BLACK-SCHOLES EQUATION

Young S. Lee

ABSTRACT. The purpose of this paper is to present approximation of C_0 -sequentially equicontinuous semigroups on a sequentially complete locally convex space X.

1. Introduction

In 1973, Black and Scholes showed that under certain natural assumptions about the financial market, the price of a European option V, as a function of time τ and the current value of the underlying asset s, satisfies the final value problem

$$\begin{cases} \frac{\partial V}{\partial \tau} &= -\frac{1}{2}\sigma^2 s^2 \frac{\partial^2 V}{\partial s^2} - rs \frac{\partial V}{\partial s} + rV, & 0 \le \tau \le \bar{\tau}, \ 0 \le s < \infty \\ V(s, \ \bar{\tau}) &= \bar{h}(s), \end{cases}$$

where σ is the volatility, r is the risk-free interest rate and $\bar{\tau}$ is the expiry date. By introducing new variables

$$t = \frac{1}{2}(\bar{\tau} - \tau)\sigma^2$$
, $x = \ln s$ and $u(x, \tau) = V(s, \tau)$,

we have the following initial value problem

$$\begin{cases} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2} + (\gamma - 1)\frac{\partial u}{\partial x} - \gamma u, \\ u(x, 0) &= h(x), \end{cases}$$

where $\gamma = 2r/\sigma^2 < 1$ is a constant and $h(x) = \bar{h}(e^x)$.

Rewriting this equation in terms of a differential operator A, we can interpret this equation as an abstract Cauchy problem u'(t) = Au(t), u(0) = f. It is well-known that the solution of the abstract Cauchy problem for a linear operator $A: D(A) \to X$ on a Banach space X and

Received July 23, 2018; Accepted December 26, 2018.

²⁰¹⁰ Mathematics Subject Classification: Primary 47D03, 47D99.

Key words and phrases: Black Scholes equation, C_0 semigroup, approximation.

This work was supported by a sabbatical year research grant from Seoul Women's University (2017).

an initial value $f \in D(A)$ is given by u(t)S(t)f if A is the generator of a C_0 semigroup $\{S(t): t \geq 0\}$. And thus the price of the option is obtained from the semigroup. Therefore it is crucial to determine whether the Black-Scholes operator generates a C_0 semigroup or not.

In this paper we will show that the differential operator

$$\frac{d}{dx^2} + (\gamma - 1)\frac{d}{dx} - \gamma I$$

is a perturbation of the square of a generator of a C_0 group and it generates a C_0 semigroup on a suitable Banach space X and then we will present the approximation of this semigroup by discrete semigroups.

2. Approximation

We recall some definitions of the C_0 semigroup. For more information about the C_0 semigroup, see[P]. Let X be a Banach space.

DEFINITION 2.1. A family $\{T(t): t \geq 0\}$ of bounded linear operators from X into itself is called a C_0 semigroup on X if

- (i) T(0) = I, the identity operator on X and T(t+s) = T(t)T(s) for $t, s \ge 0$
- (ii) $\lim_{t\to 0} T(t)x = x$ for all $x \in X$.

 $\{T(t): t \geq 0\}$ is called a C_0 semigroup of contractions if $||T(t)|| \leq 1$ for all $t \geq 0$. If the properties (i) and (ii) hold for all $t \in \mathbf{R}$, we call $\{T(t): t \in \mathbf{R}\}$ a C_0 group.

The generator of $\{T(t): t \geq 0\}$ is the linear operator A, given by

$$Ax = \lim_{h \to 0} \frac{1}{h} (T(h)x - x)$$

with
$$D(A) = \{x \in X : \lim_{h \to 0} \frac{1}{h} (T(h)x - x) \in X\}.$$

In order to trnsform Black-Scholes equation into the abstract Cauchy problem, consider the Banach space of continuous functions vanishing at infinity

$$X = C_0(\mathbf{R}) = \{ f \in C(\mathbf{R}) : \lim_{|x| \to \infty} f(x) = 0 \}$$

with the usual supremum norm $||f|| = \sup_{x \in \mathbf{R}} |f(x)|$.

Let (T(t)f)(x) = f(t+x) for $t \in \mathbf{R}$, $f \in X$ and $x \in \mathbf{R}$. Then it is not difficult to show that $\{T(t) : t \in \mathbf{R}\}$ is a C_0 group on X. Let B be

its generator. Then for $f \in D(B)$ and $x \in \mathbf{R}$, we have

$$(Bf)(x) = \lim_{h \to 0} \frac{1}{h} (T(t)f(x) - f(x))$$
$$= \lim_{h \to 0} \frac{1}{h} (f(x+h) - f(x)) = f'(x).$$

So f is differentiable and $Bf \in X$, that is,

$$D(B) \subseteq C_0^1(\mathbf{R}) = \{ f \in C^1(\mathbf{R}) : f, f' \in X \}.$$

Conversely, let $f \in C_0^1(\mathbf{R})$. For $x \in \mathbf{R}$,

$$\begin{aligned} &|\frac{1}{h}(T(h)f(x) - f(x)) - f'(x)| \\ &= |\frac{1}{h}(f(x+h) - f(x)) - f'(x)| = |\frac{1}{h} \int_0^h (f'(x+\tau) - f'(x))d\tau| \\ &\leq \sup_{0 \leq |\tau| \leq |h|} |f'(x+\tau) - f'(x)| \to 0, \end{aligned}$$

as $h \to 0$ uniformly in $x \in \mathbf{R}$, since $f' \in C_0(\mathbf{R})$ is uniformly continuous. Therefore B = d/dx is a generator of a C_0 semigroup $\{T(t) : t \in \mathbf{R}\}$ of contractions.

THEOREM 2.2. Let A be the operator defined by

$$A = B^{2} + (\gamma - 1)B = \frac{d^{2}}{dx^{2}} + (\gamma - 1)\frac{d}{dx}$$

with $D(A) = D(B^2) = \{ f \in D(B) : Bf \in D(B) \}$. Then A is the generator of a contraction C_0 semigroup $\{ S(t) : t \geq 0 \}$ on X.

Proof. Note that B is the generator of a contraction C_0 group $\{T_2(t): t \in \mathbf{R}\}$ on X, where $T_1(t)f(x) = f(x+t)$ for $x \in \mathbf{R}$. By Corollary 3.7.5 in [A], B^2 is the generator of a bounded holomorphic C_0 semigroups $\{T_1(t): t \geq 0\}$ on X, which is given by

$$T_2(t)f = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-\frac{s^2}{4t}} T_1(s) f ds.$$

For $t \geq 0$, we have

$$||T_2(t)f|| \le \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-\frac{s^2}{4t}} ||T_1(s)f|| ds \le ||f||.$$

So $\{T_2(t): t \geq 0\}$ is a contraction C_0 semigroups on X.

By Lemma 2.8 of chapter 1 in [P], for $f \in D(B^2)$ and $\varepsilon > 0$

$$||Bf|| \le 2(||B^2f|| ||f||)^{1/2} = 2(\varepsilon ||B^2f||)^{1/2} (\frac{1}{\varepsilon} ||f||)^{1/2}$$

 $\le \varepsilon ||B^2f|| + \frac{1}{\varepsilon} ||f||$

By Corollary 3.3 of chapter 3 in [P], $B^2 + (\gamma - 1)B$ is the generator of a contraction C_0 semigroup $\{S(t): t \geq 0\}$.

Remark 2.3. $A-\gamma I=d^2/dx^2+(\gamma-1)d/dx-\gamma I$ generates a contraction C_0 semigroup $\{e^{-\gamma t}S(t):t\geq 0\}$ on X.

Next we will present the approximation of the C_0 semigroup $\{S(t): t \geq 0\}$ generated by A.

Let X_n be the space of all bounded real sequences $\{c_k\}_{-\infty}^{\infty}$ satisfying $\lim_{|k|\to\infty} c_k = 0$ with the usual supremum norm. Define linear operators $P_n: X \to X_n$ and $E_n: X_n \to X$ by

$$P_n f(x) = \{ f(k/n) \}_{k=-\infty}^{\infty} \text{ and } E_n(\{c_k\}_{-\infty}^{\infty}) = g(x),$$

where $g(k/n) = c_k$ and g(x) is linear between two consecutive points k/n and (k+1)/n. Then $\{E_n\}$ and $\{P_n\}$ satisfy the assumption 6.1 in chapter 3 in [P].

THEOREM 2.4. Let A be the generator of a C_0 semigroup $\{S(t): t \geq 0\}$ in Theorem. We define a linear operator $F(\rho_n): X_n \to X_n$ by

$$F(\rho_n)(c) = \{ (\frac{1}{2} - 2n^2 \rho_n) c_k + n^2 \rho_n (c_{k+1} + c_{k-1}) + (\frac{1}{2} + (\gamma - 1)n\rho_n) c_k - (\gamma - 1)n\rho_n c_{k-1} \}_{k=-\infty}^{\infty}$$

for $c = \{c_k\}_{k=-\infty}^{\infty}$ in X_n and some $\rho_n > 0$ such that $4n^2\rho_n < 1$. Then we have

$$\lim_{n \to \infty} ||F(\rho_n)^{k_n} P_n f - P_n S(t) f|| = 0$$

for $f \in X$ and a sequence $\{k_n\}$ of positive integers such that $\lim_{n\to\infty} k_n \rho_n = t$.

Proof. First we will show that $F(\rho_n)$ is a contraction. For $c = \{c_k\}_{k=-\infty}^{\infty}$ in X_n

$$||F(\rho_n)(c)|| \leq \sup_{k} \{ (\frac{1}{2} - 2n^2 \rho_n) |c_k| + n^2 \rho_n (|c_{k+1}| + |c_{k-1}|) + (\frac{1}{2} + (\gamma - 1)n\rho_n |c_k| + (1 - \gamma)n\rho_n |c_{k-1}| \}$$

$$\leq ((\frac{1}{2} - 2n^2 \rho_n) + 2n^2 \rho_n + (\frac{1}{2} + (\gamma - 1)n\rho_n) + (1 - \gamma)n\rho_n) ||c||$$

$$= ||c||.$$

So $F(\rho_n)$ is a contraction. And we have for $f \in D(A)$

$$\left\| \frac{1}{\rho_n} (F(\rho_n) - I) P_n f - P_n A f \right\|$$

$$\leq \sup |n^2 (f(\frac{k+1}{n}) - 2f(\frac{k}{n}) + f(\frac{k-1}{n}) - f''(\frac{k}{n})|$$

$$+ \sup |n(f(\frac{k+1}{n}) - f(\frac{k}{n}) - f'(\frac{k}{n})|.$$

Since D(A) is dense in X, f'(x) and f''(x) are uniformly continuous on \mathbb{R} . By Theorem 6.7 of chapter 3 in [P], the result follows.

References

- [1] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, *Vector-Valued Laplace Transforms and Cauchy Problems*, Monographs in Math. 96, Birkhäuser, 2001.
- [2] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), 637-654.
- [3] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44 Springer-Verlag, 1988.

Department of Mathematics Seoul Women's University Seoul, 01797 Korea E-mail: younglee@swu.ac.kr